数论
快速乘:
ll qmul(ll x,ll y,ll mod){ ll ans=0; while(y) { if(y&1) (ans+=x)%=mod; y>>=1; (x+=x)%=mod; } return ans;}
快速幂:
ll qpow(ll x,ll y,ll mod){ ll ans=1; while(y) { if(y&1) (ans*=x)%=mod; y>>=1; (x*=x)%=mod; } return ans;}
Gcd:
ll gcd(ll a,ll b){ return b?gcd(b,a%b):a;}
Exgcd:
void exgcd(ll a,ll b,ll &x,ll &y){ if(b) exgcd(b,a%b,y,x),y-=a/b*x; else x=1,y=0;}
Lucas:
void init(){ f[0]=v[0]=1; for(int i=1;i<=mod;i++) f[i]=f[i-1]*i%mod; v[mod-1]=mod-1; for(int i=mod-2;i;i--) v[i]=v[i+1]*(i+1)%mod;}ll lucas(ll a,ll b){ if(a
ExLucas:
ll num(ll x,ll p){ ll re=0; while(x) { re+=x/p; x/=p; } return re;}ll fac(ll n,ll p,ll pc){ if(!n) return 1ll; ll sum=1ll; for(int i=1;i
BSGS:
mapMP;ll bsgs(ll A,ll B,ll C) // x^A \equiv B (mod\ C){ ll m=ceil(sqrt(C+0.5)); MP.clear(); ll now=1; for(int i=1;i<=m;i++) { (now*=A)%=C; if(!MP[now]) MP[now]=i; } A=qpow(A,m,C); now=1; for(int i=0;i<=m;i++) { ll x,y; exgcd(now,C,x,y); x=(x*B%C+C)%C; if(MP.count(x)) return i*m+MP[x]; (now*=A)%=C; } return 0;}
求原根:
ll get_ori(ll p,ll phi){ int c=0; for(int i=2;1ll*i*i<=phi;i++) if(phi%i==0) { f[++c]=i; f[++c]=phi/i; } for(int g=2;;g++) { int j; for(j=1;j<=c;j++) if(qpow(g,f[j],p)==1) break; if(j==c+1) return g; } return 0;}
线性基:
for(i=1<<30;i;i>>=1){ for(j=1;j<=n;j++) if(!vis[j]&&a[j].v&i) break; if(j>n) continue; sum-=a[j].num; vis[j]=true; for(k=1;k<=n;k++) if(!vis[k]&&a[k].v&i) a[k].v^=a[j].v;}
图论
tarjan:
void tarjan(int p){ st[++top]=p; ins[p]=true; dep[p]=low[p]=++cnt; for(int i=head[p];i;i=nxt[i]) { if(!dep[to[i]) tarjan(to[i]),low[p]=min(low[p],low[to[i]]); else if(ins[to[i]]) low[p]=min(low[p],dep[to[i]]); } if(dep[p]==low[p]) { Number++; int t; do { t=st[top--]; ins[t]=false; f[Number][++f[Number][0]]=t; }while(t!=p); }}
堆优化Dijkstra:
priority_queue>q;void Dijkstra(){ while(!q.empty()) q.pop(); memset(dis,0x3f,sizeof dis); dis[S]=0; q.push(mp(0,S)); while(!q.empty()) { while(!q.empty()&&-q.top().first>dis[q.top().second]) q.pop(); if(q.empty()) return; int x=q.top().second; q.pop(); for(int i=head[x];i;i=nxt[i]) if(dis[to[i]]>dis[x]+val[i]) { dis[to[i]]=dis[x]+val[i]; q.push(mp(-dis[to[i]],to[i])); } }}
spfa:
queue q;void spfa(){ while(!q.empty()) q.pop(); memset(dis,0x3f,sizeof dis); dis[S]=0; q.push(S); vis[x]=true; while(!q.empty()) { int x=q.front(); q.pop(); vis[x]=false; for(int i=head[x];i;i=nxt[i]) if(dis[to[i]]>dis[x]+val[i]) { dis[to[i]]=dis[x]+val[i]; if(!vis[to[i]]) q.push(to[i]),vis[to[i]]=true; } }}
倍增lca
void dfs(int p, int fa) { f[0][p] = fa; dep[p] = dep[fa] + 1; for (int i = 1; i <= 20; i ++ ) f[i][p] = f[i-1][f[i-1][p]]; for (int i = head[p]; i; i = nxt[i]) { if(to[i] != fa) { dfs(to[i], p); } }}int lca(int x, int y) { if (dep[x] < dep[y]) swap(x, y); for (int i = 20; ~i; i -- ) { if (dep[f[i][x]] >= dep[y]) { x = f[i][x]; } } if (x == y) return x; for (int i = 20; ~i; i -- ) { if (f[i][x] != f[i][y]) { x = f[i][x]; y = f[i][y]; } } return f[0][x];}
数据结构
非旋转Treap
int merge(int x, int y) { if (!x || !y) return x | y; pushdown(x); pushdown(y); if (a[x].key > a[y].key) { a[x].rs = merge(a[x].rs, y); pushup(x); return x; } else { a[y].ls = merge(x, a[y].ls); pushup(y); return y; }}par split(int x, int k) { if(!k) return (par) {0, x}; pushdown(x); int ls = a[x].ls, rs = a[x].rs; if (k == a[ls].size) { a[x].ls = 0; pushup(x); return (par) {ls, x}; } else if (k == a[ls].size + 1) { a[x].rs = 0; pushup(x); return (par) {x, rs}; } else if (k < a[ls].size) { par t = split(ls, k); a[x].ls = t.y; pushup(x); return (par) {t.x, x}; } else { par t = split(rs, k - a[ls].size - 1); a[x].rs = t.x; pushup(x); return (par) {x, t.y}; }}